97¹ú¼Ê

¿ªÍØÁ¢Ò졤¹ØÁµÈËÉú ¿ªÍØÁ¢Ò졤¹ØÁµÈËÉú
¿ªÍØÁ¢Ò졤¹ØÁµÈËÉú
97¹ú¼ÊÖÆÒ©¼¯ÍÅ¡ª×¨Òµ´ÓÊÂÏÖ´úÖÐÒ©¡¢»¯Ñ§ÖÊÁÏÒ©¼°ÆäÖÆ¼ÁÑз¢¡¢Éú²úºÍÏúÊ۵ĸßÐÂÊÖÒÕÆóÒµ
ÕâÊÇÐÎòÐÅÏ¢

ÐÂÎÅ×ÊѶ

/
/
¡¾ÎÄÏ×ÑжÁ¡¿Ê¯É¼¼î¼×ͨ¹ýÒÖÖÆÄÚÆ¤Ï¸°û½¹Íö¸ÄÉÆ×Ô¾õÐÔÖëÍøÄ¤ÏÂÇ»³öѪºóµÄÉñ¾­¹¦Ð§È±Ëð

¡¾ÎÄÏ×ÑжÁ¡¿Ê¯É¼¼î¼×ͨ¹ýÒÖÖÆÄÚÆ¤Ï¸°û½¹Íö¸ÄÉÆ×Ô¾õÐÔÖëÍøÄ¤ÏÂÇ»³öѪºóµÄÉñ¾­¹¦Ð§È±Ëð

  • ·ÖÀࣺÐÂÎÅ×ÊѶ
  • ×÷Õߣº
  • ȪԴ£º
  • ÈÕÆÚ£º2024Äê06ÔÂ03
  • »á¼ûÁ¿£º0

¡¾ÌáÒªÐÎò¡¿¸ÃÑо¿Åú×¢ £¬Ê¯É¼¼î¼××¢ÉäÒº¿ÉÒÖÖÆÄÚÆ¤Ï¸°û½¹Íö¡¢¿¹Ñõ»¯Ó¦¼¤ £¬¸ÄÉÆÖëÍøÄ¤ÏÂÇ»³öѪ£¨SAH£©ºóµÄÔçÆÚÄÔËðÉË ¡£

¡¾ÎÄÏ×ÑжÁ¡¿Ê¯É¼¼î¼×ͨ¹ýÒÖÖÆÄÚÆ¤Ï¸°û½¹Íö¸ÄÉÆ×Ô¾õÐÔÖëÍøÄ¤ÏÂÇ»³öѪºóµÄÉñ¾­¹¦Ð§È±Ëð

¡¾ÌáÒªÐÎò¡¿¸ÃÑо¿Åú×¢ £¬Ê¯É¼¼î¼××¢ÉäÒº¿ÉÒÖÖÆÄÚÆ¤Ï¸°û½¹Íö¡¢¿¹Ñõ»¯Ó¦¼¤ £¬¸ÄÉÆÖëÍøÄ¤ÏÂÇ»³öѪ£¨SAH£©ºóµÄÔçÆÚÄÔËðÉË ¡£

  • ·ÖÀࣺÐÂÎÅ×ÊѶ
  • ×÷Õߣº
  • ȪԴ£º
  • ÈÕÆÚ£º2024-06-03
  • »á¼ûÁ¿£º0
ÏêÇé

½üÆÚ¡¶Huperzine A ameliorates neurological deficits after spontaneous subarachnoid hemorrhage through endothelial cell pyroptosis inhibition¡·ÔÚ Acta Biochimica et Biophysica Sinica£¨ÉúÎﻯѧÓëÉúÎïÎïÀíѧ±¨£©½ÒÏþ ¡£¸ÃÑо¿ÓÉÎ÷ºþ´óѧҽѧԺÁ¥Êôº¼ÖÝÊеÚÒ»ÈËÃñÒ½ÔºÉñ¾­Íâ¿ÆºÍÌå¼ìÖÐÐÄÍŶÓÍê³É ¡£¸ÃÑо¿Åú×¢ £¬Ê¯É¼¼î¼××¢ÉäÒº¿ÉÒÖÖÆÄÚÆ¤Ï¸°û½¹Íö¡¢¿¹Ñõ»¯Ó¦¼¤ £¬¸ÄÉÆÖëÍøÄ¤ÏÂÇ»³öѪ£¨SAH£©ºóµÄÔçÆÚÄÔËðÉË ¡£

 

97¹ú¼Ê¡¤(ÖйúÇø)¼¯ÍŹٷ½ÍøÕ¾

 

 

Åä¾°ÏÈÈÝ

Subarachnoid hemorrhage (SAH) is a severe stroke type [1,2] mainly caused by aneurysm rupture and is characterized by high morbidity and mortality [3]. Additionally, survivors often have cognitive impairments affecting patients’ daily functionality, labor capacity, and quality of life [4]. Early brain injury within 72 h is considered to be the main cause of poor prognosis in SAH patients [5]. Alleviating early brain damage contributes to the improvement on survival rate and prognosis of SAH patients [6,7]. Therefore, inhibiting early brain damage in SAH patients is an important therapeutic strategy for improving the prognosis of SAH patients. It has been revealed that neuronal apoptosis and blood-brain barrier (BBB) destruction are the hallmark events of early brain injury after SAH, are closely related to irreversible acute brain injury after SAH, and are important factors for poor prognosis in SAH patients [8,9]. In addition, the increased permeability of the BBB allows immune molecules to migrate to the brain parenchyma, which further exacerbates brain injury. It is suggested that inhibiting BBB dysfunction can effectively ameliorate early brain injury after SAH and is an important therapeutic method for improving the prognosis of SAH patients.

ÖëÍøÄ¤ÏÂÇ»³öѪ£¨SAH£©ÊÇÒ»ÖÖÑÏÖØµÄÄÔ×äÖÐÀàÐÍ[1,2] £¬Ö÷ÒªÓÉ­ÄÚ¶¯ÂöÁöÆÆËéÒýÆð £¬ÆäÌØµãÊǸßÖ²ÐÂʺ͸ßéæÃüÂÊ[3] ¡£±ðµÄ £¬ÐÒ´æÕßͨ³£±£´æÈÏÖªÕϰ­ £¬Ó°Ï컼ÕßµÄÒ»Ñùƽ³£¹¦Ð§¡¢ÀͶ¯ÄÜÁ¦ºÍÉúÑÄÖÊÁ¿[4] ¡£SAHºó72 СʱÄÚµÄÔçÆÚÄÔËðÉ˱»ÒÔΪÊÇÓ°ÏìSAH »¼ÕßÔ¤ºó²»Á¼µÄÖ÷ÒªÔµ¹ÊÔ­ÓÉÖ®Ò»[5] ¡£¼õÇáÔçÆÚÄÔËðÉËÓÐÖúÓÚ¸ÄÉÆ SAH »¼ÕßµÄÉúÑÄÂʺÍÔ¤ºó[6,7] ¡£Òò´Ë £¬ÒÖÖÆ SAH »¼ÕßÔçÆÚÄÔËðÉËÊǸÄÉÆ SAH »¼ÕßÔ¤ºóµÄÖ÷ÒªÖÎÁÆÕ½ÂÔ ¡£Ñо¿Åú×¢ £¬Éñ¾­ÔªµòÍöºÍѪÄÔÆÁÕÏ£¨BBB£©ÆÆËðÊÇ SAHºóÔçÆÚÄÔËðÉ˵ıê¼ÇÐÔÊÂÎñ £¬Óë SAHºó²»¿ÉÄæµÄ¼±ÐÔÄÔËðÉËÇ×½üÏà¹Ø £¬ÊÇ SAH »¼ÕßÔ¤ºó²»Á¼µÄÖ÷ÒªÒòËØ[8,9] ¡£±ðµÄ £¬ÑªÄÔÆÁÕϵÄͨ͸ÐÔÔöÌíʹÃâÒß·Ö×ÓǨáãµ½ÄÔʵÖÊ £¬Õâ½øÒ»²½¼Ó¾çÁËÄÔËðÉË ¡£Ñо¿Åú×¢ £¬ÒÖÖÆÑªÄÔÆÁÕϹ¦Ð§Õϰ­¿ÉÓÐÓøÄÉÆ SAHºóµÄÔçÆÚÄÔËðÉË £¬ÊǸÄÉÆ SAH »¼ÕßÔ¤ºóµÄÖ÷ÒªÒªÁì ¡£

 

ÖÊÁϺÍÒªÁì

Animal handling

SPF male SD rats were fed according to standard animal care proposal. After one week of adaptive feeding, the following treatments were carried out: (1) sham group: SD rats were subjected to a sham operation; (2) model group: SD rats were treated for SAH, and saline was applied intraperitoneally; and (3) treatment group: SD rats were treated for SAH, and Huperzine A (0.1 mg/kg, WEPON, Drug Approval Number: H20183340) was applied intraperitoneally. The procedure was as follows: after the SD rats were anesthetized, 0.35 mL of fresh autologous blood (20 s) without heparin was slowly injected into the anterior cistern of the optic chiasm, and the animals were kept head down at 30¡æ for 20 min. The rats were immediately injected with 2 mL of normal saline and returned to the cage alone. The body temperature was maintained at 37°C. In the sham group, the SD rats (male, 250 -300 g) were injected with normal saline instead of autologous blood; in the model group and treatment group, the placebo (saline) and Huperzine A were administered intraperitoneally 12 h after autologous blood injection.

SPF ÐÛÐÔ SD ´óÊóƾ֤±ê×¼¶¯ÎïËÇÑø¼Æ»®¾ÙÐÐËÇÑø ¡£Ë³Ó¦ÐÔËÇÑøÒ»Öܺó £¬¾ÙÐÐÒÔÏ´¦Öóͷ££º£¨1£©¼ÙÊÖÊõ×飺SD ´óÊó¾ÙÐмÙÊÖÊõ²Ù×÷£»£¨2£©Ä£×Ó×飺SD ´óÊóÓÕµ¼ÖëÍøÄ¤ÏÂÇ»³öѪ£¨SAH£© £¬¸¹Ç»×¢ÉäÐÄÀíÑÎË®£»£¨3£©ÖÎÁÆ×飺SD ´óÊóÓÕµ¼ SAH £¬ ¸¹Ç»×¢Éäʯɼ¼î¼×£¨0.1 mg/kg £¬97¹ú¼Ê £¬Ò©Æ·Åú×¼ºÅ£ºH20183340£© ¡£²Ù×÷°ì·¨Èç Ï£ºSD ´óÊóÂé×íºó £¬»ºÂý×¢Èë²»º¬¸ÎËØµÄÐÂÏÊ×ÔÌåѪ£¨20 s £¬0.35 mL£©ÖÁÊÓ½»Ö¯Ç°³Ø £¬½«¶¯ÎïÍ·Ïòϼá³ÖÔÚ 30°C ÏÂ20 ·ÖÖÓ ¡£Á¬Ã¦×¢Éä2 mLÐÄÀíÑÎË® £¬ ½«´óÊóµ¥¶À·Å»ØÁýÖÐ £¬ÌåÎÂά³ÖÔÚ 37°C ¡£¼ÙÊÖÊõ×éÖÐ £¬SD´óÊó£¨ÐÛÐÔ £¬250-300 g£©×¢ÉäÐÄÀíÑÎˮȡ´ú×ÔÌåѪ ¡£ÔÚÄ£×Ó×éºÍÖÎÁÆ×éÖÐ £¬´óÊó×ÔÌåѪעÉäºó 12 Сʱ»®·Ö¾­¸¹Ç»×¢Éäο½å¼Á£¨ÐÄÀíÑÎË®£©ºÍʯɼ¼î¼× ¡£ 

 

 

Ñо¿Ð§¹û

Ò»¡¢Ê¯É¼¼î¼×¸ÄÉÆ SAH ´óÊóÉñ¾­¹¦Ð§È±ÏݺÍÄÔ×éÖ¯Éñ¾­ÔªµòÍö ¡£

 

 

¶þ¡¢Ê¯É¼¼î¼×ͨ¹ý¸ÄÉÆ SAH ´óÊóϸÃÜÅþÁ¬ÂѰ׵ıí´ïÀ´ÒÖÖÆ BBB ¹¦Ð§Õϰ­ ¡£

97¹ú¼Ê¡¤(ÖйúÇø)¼¯ÍŹٷ½ÍøÕ¾

 

Èý¡¢Ê¯É¼¼î¼×¸ÄÉÆÁË SAH ´óÊóÄÔ×éÖ¯ÄÚÆ¤Ï¸°ûµÄ½¹Íö ¡£

97¹ú¼Ê¡¤(ÖйúÇø)¼¯ÍŹٷ½ÍøÕ¾

 

ËÄ¡¢Ê¯É¼¼î¼×¸ÄÉÆÁË SAH ´óÊóÄÔ×éÖ¯µÄÑõ»¯Ó¦¼¤ £¬ÒÖÖÆÁËÑõ»¯Ó¦¼¤½éµ¼µÄÄÚÆ¤Ï¸°û½¹Íö ¡£ 

97¹ú¼Ê¡¤(ÖйúÇø)¼¯ÍŹٷ½ÍøÕ¾

 

Î塢ʯɼ¼î¼×ÒÖÖÆ SAH ´óÊóÄÔ×éÖ¯ÄÚÆ¤Ï¸°û NF-κB ͨ·µÄ¼¤»î ¡£

97¹ú¼Ê¡¤(ÖйúÇø)¼¯ÍŹٷ½ÍøÕ¾

 

 

½áÂÛ£ºÖ²Îïµ¥Ìåʯɼ¼î¼×ÔÚ·ÊÅÖÏà¹ØµÄÈÏÖªÕϰ­[32]¡¢°¢¶û´Äº£Ä¬²¡ºÍÆäËûÐÎʽµÄ³Õ´ô[33]ÒÔ¼°Öظ´ÐÔ´´ÉËÐÔÄÔËðÉË[34]ÖÐÆðÉñ¾­±£»¤×÷Óà ¡£ÔÚÕâÏîÑо¿ÖÐ £¬ÎÒÃÇ·¢Ã÷ʯɼ¼î¼×¿ÉÒÔÏÔÖø¸ÄÉÆ SAH ´óÊóµÄÉñ¾­¹¦Ð§È±ËðÆÀ·ÖÇå¾²ºâÆÀ·Ö ¡£¾Ý±¨µÀ £¬Ê¯É¼¼î¼×¶ÔÉñ¾­ËðÉ˵ĸÄÉÆ×÷ÓÃÓëÆä¶ÔÉñ¾­ÔªµòÍöµÄÒÖÖÆ×÷ÓÃÓйØ[17,18] ¡£ÔÚÕâÏîÑо¿ÖÐ £¬ÎÒÃÇ·¢Ã÷ʯɼ¼î¼×¿ÉÒÔÏÔ׎µµÍÄÔ×éÖ¯ÖÐÉñ¾­ÔªµòÍöµÄˮƽ ¡£ÎÒÃǵÄЧ¹ûÅú×¢ £¬Ê¯É¼¼î¼×¿ÉÒÔÒÖÖÆÉñ¾­Ï¸°ûµòÍö £¬¸ÄÉÆ SAH ºóµÄÔçÆÚÉñ¾­¹¦Ð§È±Ë𠡣ʯɼ¼î¼×ÒÑÔÚ¶àÏîÁÙ´²Ñо¿Öб»Ö¤ÊµÊÇÇå¾²µÄ ¡£±¾Ñо¿Ôö²¹ÁËʯɼ¼î¼×ÔÚÉñ¾­ËðÉ˼²²¡ÖеÄÉñ¾­±£»¤¹¦Ð§ £¬Îª SAH ºóÔçÆÚÄÔËðÉËÌṩÁËеÄDZÔÚÁÆ·¨ ¡£

 

 

²Î¿¼ÎÄÏ×

1. Suzuki H, Hasegawa Y, Chen W, Kanamaru K, Zhang JH. Recombinant osteopontin in cerebral vasospasm after subarachnoid hemorrhage. Ann Neurol. 2010; 68: 650-60.

2. Zhang X, Karuna T, Yao ZQ, Duan CZ, Wang XM, Jiang ST, et al. High wall shear stress beyond a certain range in the parent artery could predict the risk of anterior communicating artery aneurysm rupture at follow-up. J Neurosurg. 2018; 131: 868-75.

3. Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet. 2017; 389: 655-66.

4. Plata-Bello J, Modrono C, Acosta-Lopez S, Perez-Martin Y, Marcano F, Garcia-Marin V, et al. Subarachnoid hemorrhage and visuospatial and visuoperceptive impairment: disruption of the mirror neuron system. Brain Imaging Behav. 2017; 11: 1538-47.

5. Suzuki H, Nakano F. To Improve Translational Research in Subarachnoid Hemorrhage. Transl Stroke Res. 2018; 9: 1-3.

6. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013; 4: 432-46.

7. Zhang H, He X, Wang Y, Sun X, Zhu L, Lei C, et al. Neuritin attenuates early brain injury in rats after experimental subarachnoid hemorrhage. Int J Neurosci. 2017; 127: 1087-95.

8. Lublinsky S, Major S, Kola V, Horst V, Santos E, Platz J, et al. Early blood-brain barrier dysfunction predicts neurological outcome following aneurysmal subarachnoid hemorrhage. EBioMedicine. 2019; 43: 460-72.

9. Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res. 2006; 28: 399-414.

10. Chang D, Liu J, Bilinski K, Xu L, Steiner GZ, Seto SW, et al. Herbal Medicine for the Treatment of Vascular Dementia: An Overview of Scientific Evidence. Evid Based Complement Alternat Med. 2016; 2016: 7293626.

11. Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G. Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochemistry Reviews. 2016; 15: 51-85.

12. Hao Z, Liu M, Liu Z, Lv D. Huperzine A for vascular dementia. Cochrane Database Syst Rev. 2009: CD007365.

13. Xing SH, Zhu CX, Zhang R, An L. Huperzine a in the treatment of Alzheimer's disease and vascular dementia: a meta-analysis. Evid Based Complement Alternat Med. 2014; 2014: 363985.

14. Yang G, Wang Y, Tian J, Liu JP. Huperzine A for Alzheimer's disease: a systematic review and meta-analysis of randomized clinical trials. PLoS One. 2013; 8: e74916.

15. Yue J, Dong BR, Lin X, Yang M, Wu HM, Wu T. Huperzine A for mild cognitive impairment. Cochrane Database Syst Rev. 2012; 12: CD008827.

16. Yu P, Dong WP, Tang YB, Chen HZ, Cui YY, Bian XL. Huperzine A lowers intraocular pressure via the M3 mAChR and provides retinal neuroprotection via the M1 mAChR: a promising agent for the treatment of glaucoma. Ann Transl Med. 2021; 9: 332.

17. Zhou J, Tang XC. Huperzine A attenuates apoptosis and mitochondria-dependent caspase-3 in rat cortical neurons. FEBS Lett. 2002; 526: 21-5.

18. Xiao XQ, Zhang HY, Tang XC. Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res. 2002; 67: 30-6.

19. Wang Y, Wei Y, Oguntayo S, Doctor BP, Nambiar MP. A combination of [+] and [-]-Huperzine A improves protection against soman toxicity compared to [+]-Huperzine A in guinea pigs. Chem Biol Interact. 2013; 203: 120-4.

20. Ruan Q, Hu X, Ao H, Ma H, Gao Z, Liu F, et al. The neurovascular protective effects of huperzine A on D-galactose-induced inflammatory damage in the rat hippocampus. Gerontology. 2014; 60: 424-39.

21. Zhang XS, Wu Q, Wu LY, Ye ZN, Jiang TW, Li W, et al. Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis. 2016; 7: e2416.

22. Zhu Q, Enkhjargal B, Huang L, Zhang T, Sun C, Xie Z, et al. Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-kappaB pathway after subarachnoid hemorrhage in rats. J Neuroinflammation. 2018; 15: 178.

23. Yu LM, Zhang WH, Han XX, Li YY, Lu Y, Pan J, et al. Hypoxia-Induced ROS Contribute to Myoblast Pyroptosis during Obstructive Sleep Apnea via the NF-kappaB/HIF-1alpha Signaling Pathway. Oxid Med Cell Longev. 2019; 2019: 4596368.

24. Zhang Y, Yin K, Wang D, Wang Y, Lu H, Zhao H, et al. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-kappaB-NLRP3-GSDMD and AMPKPGC-1alpha axes. Sci Total Environ. 2022; 840: 156727.

25. Mo J, Enkhjargal B, Travis ZD, Zhou K, Wu P, Zhang G, et al. AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats. Redox Biol. 2019; 20: 75-86.

26. Zhang Y, Yang X, Ge X, Zhang F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother. 2019; 109: 726-33.

27. McLarnon JG. A Leaky Blood-Brain Barrier to Fibrinogen Contributes to Oxidative Damage in Alzheimer's Disease. Antioxidants (Basel). 2021; 11.

28. Qin W, Li J, Zhu R, Gao S, Fan J, Xia M, et al. Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-kappaB pathway. Aging (Albany NY). 2019; 11: 11391-415.

29. Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 2018; 9: 171.

30. Wang Y, Guan X, Gao CL, Ruan W, Zhao S, Kai G, et al. Medioresinol as a novel PGC-1alpha activator prevents pyroptosis of endothelial cells in ischemic stroke through PPARalpha-GOT1 axis. Pharmacol Res. 2021; 169: 105640.

31. Sul OJ, Ra SW. Quercetin Prevents LPS-Induced Oxidative Stress and Inflammation by Modulating NOX2/ROS/NF-kB in Lung Epithelial Cells. Molecules. 2021; 26.

32. Wang HY, Wu M, Diao JL, Li JB, Sun YX, Xiao XQ. Huperzine A ameliorates obesityrelated cognitive performance impairments involving neuronal insulin signaling pathway in mice. Acta Pharmacol Sin. 2020; 41: 145-53.

33. Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A. Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev Neurother. 2016; 16: 671-80.

34. Mei Z, Zheng P, Tan X, Wang Y, Situ B. Huperzine A alleviates neuroinflammation, oxidative stress and improves cognitive function after repetitive traumatic brain injury. Metab Brain Dis. 2017; 32: 1861-9.

35. Okada T, Kawakita F, Nishikawa H, Nakano F, Liu L, Suzuki H. Selective Toll-Like Receptor 4 Antagonists Prevent Acute Blood-Brain Barrier Disruption After Subarachnoid Hemorrhage in Mice. Mol Neurobiol. 2019; 56: 976-85.

36. Okada T, Enkhjargal B, Travis ZD, Ocak U, Tang J, Suzuki H, et al. FGF-2 Attenuates Neuronal Apoptosis via FGFR3/PI3k/Akt Signaling Pathway After Subarachnoid Hemorrhage. Mol Neurobiol. 2019; 56: 8203-19.

37. Sabri M, Lass E, Macdonald RL. Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat. 2013; 2013:394036.

38. Suzuki H. What is early brain injury? Transl Stroke Res. 2015; 6: 1-3.39. Sabri M, Ai J, Lass E, D'Abbondanza J, Macdonald RL. Genetic elimination of eNOS reduces secondary complications of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2013; 33: 1008-14.

40. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015; 7: a020412.

41. Huang L, Chen Y, Liu R, Li B, Fei X, Li X, et al. P-Glycoprotein Aggravates Blood Brain Barrier Dysfunction in Experimental Ischemic Stroke by Inhibiting Endothelial Autophagy. Aging Dis. 2022; 13: 1546-61.

42. Heithoff BP, George KK, Phares AN, Zuidhoek IA, Munoz-Ballester C, Robel S. Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain. Glia. 2021; 69: 436-72.

43. Zhang S, An Q, Wang T, Gao S, Zhou G. Autophagy- and MMP-2/9-mediated Reduction and Redistribution of ZO-1 Contribute to Hyperglycemia-increased Blood-Brain Barrier Permeability During Early Reperfusion in Stroke. Neuroscience. 2018; 377: 126-37.

44. Xu P, Tao C, Zhu Y, Wang G, Kong L, Li W, et al. TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage. J Neuroinflammation. 2021; 18: 188.

45. Xu P, Hong Y, Xie Y, Yuan K, Li J, Sun R, et al. TREM-1 Exacerbates Neuroinflammatory Injury via NLRP3 Inflammasome-Mediated Pyroptosis in Experimental Subarachnoid Hemorrhage. Transl Stroke Res. 2021; 12: 643-59.

46. Liu L, Wang N, Kalionis B, Xia S, He Q. HMGB1 plays an important role in pyroptosis induced blood brain barrier breakdown in diabetes-associated cognitive decline. J Neuroimmunol. 2022; 362: 577763.

47. Bellut M, Papp L, Bieber M, Kraft P, Stoll G, Schuhmann MK. NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood-brain barrier integrity in murine stroke. Cell Death Dis. 2021; 13: 20.

48. Liang Y, Song P, Chen W, Xie X, Luo R, Su J, et al. Inhibition of Caspase-1 Ameliorates Ischemia-Associated Blood-Brain Barrier Dysfunction and Integrity by Suppressing Pyroptosis Activation. Front Cell Neurosci. 2020; 14: 540669.

49. Matz PG, Copin JC, Chan PH. Cell death after exposure to subarachnoid hemolysate correlates inversely with expression of CuZn-superoxide dismutase. Stroke. 2000; 31:2450-9.

50. Marzatico F, Gaetani P, Cafe C, Spanu G, Rodriguez y Baena R. Antioxidant enzymatic activities after experimental subarachnoid hemorrhage in rats. Acta Neurol Scand. 1993; 87: 62-6.

51. Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 2022; 13: 1039241.

52. Xiao XQ, Wang R, Han YF, Tang XC. Protective effects of huperzine A on betaamyloid(25-35) induced oxidative injury in rat pheochromocytoma cells. Neurosci Lett. 2000; 286: 155-8.

53. Tao LX, Huang XT, Chen YT, Tang XC, Zhang HY. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons. Acta Pharmacol Sin. 2016; 37: 1391-400.

54. Xu Z, Wang Y. Huperzine A attenuates hepatic ischemia reperfusion injury via antioxidative and anti-apoptotic pathways. Mol Med Rep. 2014; 10: 701-6.

55. Chen J, Xuan Y, Chen Y, Wu T, Chen L, Guan H, et al. Netrin-1 alleviates subarachnoid haemorrhage-induced brain injury via the PPARgamma/NF-KB signalling pathway. J Cell Mol Med. 2019; 23: 2256-62.

56. Kolgazi M, Uslu U, Yuksel M, Velioglu-Ogunc A, Ercan F, Alican I. The role of cholinergic anti-inflammatory pathway in acetic acid-induced colonic inflammation in the rat. Chem Biol Interact. 2013; 205: 72-80.

57. Sui X, Gao C. Huperzine A ameliorates damage induced by acute myocardial infarction in rats through antioxidant, anti-apoptotic and anti-inflammatory mechanisms. Int J Mol Med. 2014; 33: 227-33.

 

 

ÉùÃ÷£º

1.±¾ÐÂÎÅÖ¼ÔÚ·ÖÏíѧÊõÇ°ÑØ¶¯Ì¬ £¬½ö¹©Ò½ÁÆÎÀÉúרҵÈËÊ¿»ùÓÚѧÊõÄ¿µÄ²ÎÔÄ £¬·Ç¹ã¸æÓÃ; ¡£

2.97¹ú¼ÊÖÆÒ©²î³ØÈκÎÒ©Æ·ºÍ/»ò˳Ӧ֢×÷ÍÆ¼ö ¡£

ɨ¶þάÂëÓÃÊÖ»ú¿´

ÔÝʱûÓÐÄÚÈÝÐÅÏ¢ÏÔʾ
ÇëÏÈÔÚÍøÕ¾ºǫ́Ìí¼ÓÊý¾Ý¼Í¼ ¡£

Ïà¹ØÍÆ¼ö

ϲ±¨ 2025-04-15

ϲ±¨ | ÈÈÁÒ×£ºØ97¹ú¼Ê£¨×¢²áÉ̱꣺wepon£©ÈÙ»ñµÚÈýÅú¡°Ì¨ÖÝÀÏ×ֺ𱳯ºô

97¹ú¼Ê£¨×¢²áÉ̱꣺wepon£©ÈÙ»ñµÚÈýÅú¡°Ì¨ÖÝÀÏ×ֺ𱳯ºô ¡£
Éó²éÏêÇé
ÐÂÐͶàëĺòÑ¡»¯ºÏÎ´úлÁìÓòÑо¿È¡µÃÁÙ´²Ç°Æð¾¢Ï£Íû 2025-04-14

ÐÂÐͶàëĺòÑ¡»¯ºÏÎ´úлÁìÓòÑо¿È¡µÃÁÙ´²Ç°Æð¾¢Ï£Íû

ÔÚµ±½ñÈ«Çò·ÊÅÖÖ¢¸ß·¢µÄÑÏËàÐÎÊÆÏ £¬97¹ú¼Ê½á¹¹ÁËÕë¶ÔºÚƤÖÊËØÊÜÌ壨MCR£©µÄС·Ö×ÓÐÂÐÍ»·ëÄϵÁÐÐÂÒ© £¬Ï£ÍûÔÚ´úлÁìÓòТ˳²î±ð»¯ÁÆ·¨ ¡£ÈÕǰ £¬¹«Ë¾È«ÐºòÑ¡»¯ºÏÎïÈ¡µÃÁËÆð¾¢µÄÁÙ´²Ç°Êý¾Ý £¬ÔÚ·ÊÅÖСÊóÄ£×ÓÉÏ £¬ÊӲ쵽¡°½µ·ÊÈâ¡¢±£¼¡È⡱µÄÔ¤ÆÚЧ¹û ¡£
Éó²éÏêÇé
¡¾¡°Õ¾¡±¿öϲ±¨¡¿| 2025-04-14

¡¾¡°Õ¾¡±¿öϲ±¨¡¿| 97¹ú¼ÊÖÆÒ©¼¯ÍŲ©Ê¿ºó¿ÆÑÐÊÂÇéÕ¾ÔÙÌíÐÂÁ¦Á¿ £¬Á¢ÒìÒ©Ñз¢¼ÓËÙǰÐУ¡

2025Äê2ÔÂ28ÈÕ £¬97¹ú¼ÊÖÆÒ©¼¯ÍŲ©Ê¿ºó¿ÆÑÐÊÂÇéÕ¾ÔÚÁ¢ÒìÒ©Ñз¢ÁìÓòÓ­À´Ö÷ҪϣÍû £¬ºé´ºÀ¼²©Ê¿ºÍëÓñÁᲩʿÕýʽ½øÕ¾²¢Ë³Ëìͨ¹ý¿ªÌⱨ¸æ ¡£Õâ±ê¼Ç×Å97¹ú¼ÊÖÆÒ©¼¯ÍÅÔÚÁ¢ÒìÒ©Ñз¢µÄÕ÷³ÌÉÏÔÙ´Î×¢ÈëÁËǿʢµÄ¿ÆÑлîÁ¦ £¬Õ¹ÏÖÁ˹«Ë¾ÔÚÇ°ÑØÒ½Ò©Ñо¿Æ«ÏòµÄÉîֿʵÁ¦Óë¼á¶¨¿ÌÒâ ¡£
Éó²éÏêÇé

Copyright 2016 ? wanbang.com.cn All Rights Reserved.

»¥ÁªÍøÒ©Æ·ÐÅÏ¢·þÎñ×ʸñÖ¤Ê飺£¨Õ㣩-·Çı»®ÐÔ-2023-0143 ÎʾíÊÓ²ì  ÍøÕ¾½¨É裺ÖÐÆó¶¯Á¦ Ì¨ÖÝ

Verification ÕãICP±¸12004244ºÅ-3
ÍøÕ¾µØÍ¼